Sorpresa matematica: Gli isolani remoti hanno inventato un sistema di numeri binari
I nativi di una remota isola polinesiana hanno inventato un sistema di numeri binari, simile a quello utilizzato dai computer per calcolare, secoli prima dei matematici occidentali, come suggerisce una nuova ricerca.
Lo schema di conteggio, descritto oggi (16 dicembre) nella rivista Proceedings of the National Academy of Sciences, utilizza sia numeri decimali che binari, quindi non è un sistema binario completo da zero a infinito. Ma la parte binaria del sistema potrebbe aver aiutato gli antichi a tenere traccia di una elaborata rete commerciale tra le lontane isole del Pacifico.
“Questi erano probabilmente i numeri che erano più frequenti nei loro sistemi di commercio e ridistribuzione”, ha detto il co-autore dello studio Andrea Bender, uno scienziato cognitivo presso l’Università di Bergen in Norvegia. “Per quella gamma specifica, era utile avere questi passi binari che rendono l’aritmetica mentale molto più facile – non avevano un sistema di scrittura o di notazione, quindi dovevano fare tutto nella loro mente”.
Schema di numerazione
Uno dei matematici più famosi e all’avanguardia del XVII secolo, Gottfried Wilhelm Leibniz, inventò un sistema numerico binario e dimostrò che poteva essere usato in una macchina calcolatrice primitiva. Al giorno d’oggi, i numeri binari – un sistema in base 2 dove ogni posizione è tipicamente scritta come uno 0 o un 1 – formano la spina dorsale di tutti i moderni sistemi di calcolo.
Ma nuove prove suggeriscono che alcuni remoti isolani polinesiani potrebbero aver battuto il famoso matematico alla battuta numerica di diversi secoli.
Bender e il suo collega Sieghard Beller stavano esaminando un dizionario di Mangareva, un’isola con meno di 2.000 abitanti, grande appena 7 miglia quadrate (18 chilometri quadrati), situata circa a metà strada tra l’Isola di Pasqua e Tahiti.
“È solo un piccolo punto in un vasto oceano”, ha detto Bender a LiveScience.
I ricercatori hanno notato che i Mangarevani avevano parole per i numeri da 1 a 10. Ma per i numeri da 20 a 80, hanno usato un sistema binario, con termini separati di una parola per 20, 40 e 80. Per i numeri veramente grandi, usavano potenze di 10 fino ad almeno 10 milioni.
Per esempio, per calcolare 50 + 70 (che è 120), il sistema Mangarevan prendeva le parole per 10 (takau)+40 (tataua) e poi lo aggiungeva alla parola per 10 (takau) + 20 (paua) + 40 (tataua), che sarebbe stato espresso come 80 (varu) + 40 (tataua).
Risolvere l’aritmetica mentale
I ricercatori hanno poi esaminato i sistemi numerici nelle lingue polinesiane correlate e hanno dedotto che il sistema Mangarevan si è probabilmente evoluto per aiutare le persone a risolvere l’aritmetica mentale complessa per sostenere un sistema di commercio e di tributi che si è estinto a metà del 1400.
Fino a quel momento, i Mangarevani commerciavano su lunghe distanze per oggetti come tartarughe, polpi, noci di cocco e frutti di pane con la gente delle isole Marchesi, delle Hawaii e delle isole intorno a Tahiti. I popolani dovevano pagare un tributo per questi oggetti a persone di alto rango, fino al re, che poi ridistribuiva il bottino in grandi feste.
Lo schema di numerazione può essere l’unico esempio conosciuto di un sistema numerico binario esteso che precede Leibniz. (Le persone in Papua Nuova Guinea usano anche un sistema binario, ma non usano parole per le potenze di due, il che significa che il loro sistema non conta molto in alto, ha detto Bender.)
“Ciò che è affascinante è che mostrano molto chiaramente e molto attentamente che si può avere un sistema numerico molto complesso utilizzato in una cultura senza bisogno di notazione”, ha detto Heike Wiese, uno scienziato cognitivo e linguista presso l’Università di Potsdam in Germania, che non era coinvolto nello studio.
Segui Tia Ghose su Twitter e Google+. Segui LiveScience @livescience, Facebook & Google+. Articolo originale su LiveScience.
Notizia recente